| Algorithm | Algo. Type | Input Format | INT/FLO
AT | Processor
Type | Instance | Multiprocessor
in Single
Machine | Multi Machine | Use Cases | Comments | НР | |--|------------|--|---------------|-------------------|--------------------------------------|--|--------------------|--|---|--| | Linear Learner | SUPERVISED | * RecordIO Wrapped
Protobuf / CSV
* Float32 Data only | FLOAT32 | CPU
GPU | Any | CPU
GPU | Only CPU
No GPU | * Regression and classification
* Classification: Binary or
multiclass | * Need data to be normalized else
algo may not converge
* Multiple models are trained in
parallel | balance_multiclass_weights
learning_rate
mini_batch_Size
L1, L2 | | XGBoost | SUPERVISED | * CSV or LibSVM (not AWS
algo, but adapted, hence NO
RecordIO-protobuf) | - | CPU | M4 | - | No | * Regression and classification
* Classification: Binary or
multiclass | * Output model as pickle * Uses extreme boosting of trees * Algo is memory bound, not much compute | * subsample_trees (less
overfitting)
* eta (eq. to learning rate)
* alpha, gamma, lambda
(conservative trees for higher
values) | | Seq2Seq | SUPERVISED | * RecordIO-Protobuf | INT | GPU | P3 | GPU | No | * Machine translation * Text summarization * Speech to text * Any use case where input a sequence and output is a sequence | * Along with training data and validation data files, must provide vocabulary files in case of text seq2seq * Start with tokenized text files, then convert to RecordIO-Protobuf * Uses RNNs and CNNs internally | * batch_size * optimizer * learning_rate * num_layers_encoder * num_layers_decoder * can optimize on: accuracy, BLEU score (mach. translation), perplexity | | DeepAR | SUPERVISED | * JSON Lines * GZIP * Parquet Each record to contain - Start: starting TS - Target: the TS values to learn/predict | - | CPU
GPU | C4
P3 | CPU
GPU | CPU
GPU | * Stock price prediction * Sales and promotion effectiveness * Any time oriented forecasting, single dimension | * Uses RNNs * Can train several related timeseries, more series the better results, learns relationships b/w timeseries * Start with CPU (C4.2xlarge, or higher), if necessary, move to GPU. Only large models need GPU | * context_length (number of
time points back in time the
model learns)
* epochs, batch_size,
learning_rate, num_cells | | Blazing Text -
Text
Classification | SUPERVISED | Augmented manifest text format "label1 this is a sentence with , punctuations also tokenized . that is space delimited . One sentence per line . label at the start" | - | CPU
GPU | size < 2GB: C5
size > 2GB: P2, P. | Single GPU | No | * web search and information retrieval | * predict labels for sentence | * epochs * learning_rate * word_ngrams * vector_dim | | Algorithm | Algo. Type | Input Format | INT/FLO
AT | Processor
Type | Instance | Multiprocessor
in Single
Machine | Multi Machine | Use Cases | Comments | НР | |----------------------------|------------------|---|---------------|-------------------|----------|--|------------------------------------|--|---|--| | Blazing Text -
Word2Vec | UNSUPERVIS
ED | Word2Vec
one sentence per line | - | CPU
GPU | Р3 | CPU/GPU:
CBOW & Skip
Gram | GPU: Batch
skip gram
CPU: No | * Preparing input for NLP use cases * Vectorization of text for machine translation and sentiment analysis * Semantic similarity of words | * Represents words as vectors * Semantically similar words are represented by vectors close to each other * Semantic of or relating to meaning in language MULTIPLE MODES: * CBOW - Continuous Bag of Words - Order of words DO NOT matter * Skip Gram i.e. n-gram - order of words matter * Batch skip gram - order of words matter | * mode: mandatory
* learning_rate
* window_size
* vector_dim
* negative_Samples | | Object2Vec | | * Any object to be tokenized
into integers
* Training data:
- pairs of tokens
- sequence of tokens | INT | CPU
GPU | M5, P2 | Single machine | No | * Collaborative recommendation system * Multi-label document classification system * Sentence Embeddings * Learns relations or associations: - sen to sen - labels to seq (genre to description) - product to product (recommendation) - user to item (recommendation) | * CNNs and RNNs used * Encoders used in input - uses 2 encoders in parallel - learns associations b/w encoders, using a comparator Encoder types: * Hierchical CNNs (hCNNs) * bi-lstm * pooled_embedding | dropout, early_stopping_
epochs, learning_rate,
batch_size, layers, act. func.,
optimizer, weight_decay | | Object
Detection | SUPERVISED | RecordIO (NOT Protobuf) or
Images (JPEG or PNG)
+
With image manifest in JSON,
one JSON per image
that contains annotations | - | GPU | P2, P3 | Yes | Yes | * Detect objects in an image
* Object tracking | * Uses CNN with SSD * Transfer learning/incremental learning supported * Uses FLIP, RESCALE, JITTER internally to avoid overfitting * CPUs can be used for inference, not for training | Standard CNN HPs like:
learning_rate, batch size,
optimizer etc. | | Image
Classification | SUPERVISED | * Pipe: Apache MxNET RecordIO (NOT Protobuf) - for interoperability with other DNN frameworks * File Mode: Raw JPEG/PNG + *.LST files - associates image index, class label, path to image To use images directly in Pipe mode use JSON based Augmented Manifest Format | - | GPU | P2, P3 | Yes | Yes | * classify images into multiple
classes
* dog/cat/rat/tiger etc. | * Full training: ResNet CNN is used. N/W initialized with random weights * Transfer Learning/Pre-trained: Image Net is used. Initialized with pre trained weights. Only Top FC layer is initialized with random weights. * CPU can be used for inference, if not suitable, move to GPU | * batch_size
* learning_rate
* optimizer, B1, B2, eps,
Gamma | | Algorithm | Algo. Type | Input Format | INT/FLO
AT | Processor
Type | Instance | Multiprocessor in Single Machine | Multi Machine | Use Cases | Comments | НР | |---|------------------|--|---------------|-------------------|----------|----------------------------------|---------------|--|---|--| | Semantic
Segmentation | SUPERVISED | * Raw JPEG/PNG in file mode
+ annotations
* Add Augmented Manifest
Format for Pipe Mode | - | GPU | P2, P3 | Yes | No | * Self driving cars * Medical imaging and diagnostics * Robot sensing * Given a pixel - what object does it belong to ? | * Algo under hood: Gluon CV of MxNET = FC + Pyramid Scene Pairing + DeepLabV3 * Arch: ResNet50/ResNet101 = "Backbone" selection in HP * Trained on ImageNet data * Incremental/Transfer learning allowed * Inference can use CPU or GPU Each of the three algorithms has two distinct components: * The backbone (or encoder)—A network that produces reliable activation maps of features. * The decoder—A network that constructs the segmentation mask from the encoded activation maps. The segmentation output is represented as a grayscale image, called a segmentation mask. A segmentation mask is a grayscale image with the same shape as the | epochs, learning_rate, batch
size, algo, backbone | | Random Cut
Forest | UNSUPERVIS
ED | * RecordIO-Protobuf
* CSV | - | СРИ | M4,C4,C5 | - | No | * Anomaly detection * Detect unexpected spikes in TS data * Few people have tried using this for fraud detection | * Assigns anomaly score to each data point * Uses forest of trees * Looks at expected change in complexity as a result of adding a point to a tree * Random sampling * RCF is used in Kinesis Analytics in real time | in dataset) | | Neural Topic
Modelling | UNSUPERVIS
ED | * RecordIO-Protobuf * CSV - Words must be tokenized to integers - aux channel for vocab | INT | GPU | P2, P3 | - | | * Organize docs into topics
* Summarize docs based on
topics | * Algo: Neural Variational Inference * Define how many topics to group docs into * Used only on text * CPU / GPU for inference | num_topics
mini_batch_size
learning_rate
variation_loss (at expence of
learing time) | | LDA (Latent
Dirichlet
Allocation) | UNSUPERVIS
ED | * RecordIO-Protobuf (Pipe
Mode)
* CSV
- Words must be tokenized to
integers
- aux channel for vocab | - | СРИ | M4 | No | No | * Cluster customers based on
purchases
* Harmonic analysis in music | * Algo: LDA - Open source
availability, not DNN
* Can process more than text, like
harmonic music analysis
* Single inst. CPU | num_topics alpha0 = small values - sparse topic mixtures, >1 uniform topic mixture | | Algorithm | Algo. Type | Input Format | INT/FLO
AT | Processor
Type | Instance | Multiprocessor
in Single
Machine | Multi Machine | Use Cases | Comments | НР | |--|------------------|--|---------------|---------------------------------|----------------|--|---------------|--|---|---| | kNN (k Nearest
Neighbors) | SUPERVISED | * RecordIO-protobuf
* CSV
File or pipe mode both
- first column has label | - | CPU
GPU | - | - | - | * Classification and regression | * Sagemaker automates 3 steps: - Sample data (can't use for huge data) - Dim reduction (sign or nfjlt methods) - Build index for looking up neighbours | k
sample_size | | K-Means | UNSUPERVIS
ED | * RecordIO-protobuf
* CSV
File or pipe mode both | - | CPU
(recommen
ded)
GPU | M4, M5, C4, C5 | - | - | * Cluster data - unsupervised
* Find groups of data points
based on similarity | * Webscale K-Means in Sagemaker * Similarity measured by euclidean distance * Works to optimize the centers of eack of the k-clusters * Algorithm: 1) Determine init. cluster centers = 2 ways: k-means++ (tries to make initial clusters far apart) OR random 2) Iterate over data and calculate cluster center 3) Reduce from K to k - using Lloyd's method or k-means++ K comes from "extra_cluster_centers" which improves accuracy, but later reduced to k. K = k * x | | | PCA - Principal
Component
Analysis | UNSUPERVIS
ED | * RecordIO-protobuf
* CSV
File or pipe mode both | - | CPU
GPU | - | - | - | * Dimensionality Reduction
* Removes Curse of
Dimensionality | * Reduced Dimensions are called components * 1st component - largest possible variaility, next 2nd component, so on * Used Singular Value Decomposition (SVD) * Two Modes: - Regular: Sparse data. modelate #features, #rows - Randomized: Dense data. #large data, #large features, uses approximation algos | * algorithm_mode (regular,
random
* subtract_mean: unbiases
data | | Factorization
Machines | SUPERVISED | * RecordIO-Protobuf | FLOAT32 | CPU
(recommen
ded)
GPU | - | - | - | * Regression, Classification,
recommendation - all in one
general purpose algo for sparse
data
* Click prediction
* Item recommendation | * Limited to pairwise interaction - 2nd order e.g. user to item interactions * CSV not practical hence not supported,a s data is sparse *GPU not recommented as data is sparse, GPU works better on dense data | * Initialization methods for
bias, factors and linear terms
- methods: uniform, normal
or const
- can tune properties of each
method | | Algorithm | Algo. Type | Input Format | INT/FLO
AT | Processor
Type | Instance | Multiprocessor
in Single
Machine | Multi Machine | Use Cases | Comments | НР | |---------------------------|-------------------------------|--|---------------|---------------------------------|------------------|--|--|---|--|--| | IP Insights | UNSUPERVIS
ED | * CSV only for training
* Inference: JSON lines, CSV,
JSON | | CPU
GPU
(recommen
ded) | - | Multi GPU | - | * Identify suspicious IP addresses
in context of security
* Logins from anomalous IPs
* Identify accounts creating
resources from anamolous IPs | * Only IPv4 supported * Uses NN to learn latent vector rep. of entities and IP addresses * entities are hashed and embedded - large hash size * Automatically generates anomalous data by randomly pairing entities and IPs - as data will be highly imbalanced | * num_entity_vectors (hash
size, set to twice the unique
entity identifiers)
* vector_dim (size of
embedding vectors, scales
model size)
* Others: epoch, batch_size,
leraning_rate, etc. | | Reinforcement
Learning | REINFORCE
MENT
LEARNING | * Nothing specific to
Sagemaker | - | GPU | GPU | Yes | Yes - Multi
Instance GPU
recommended | * Games * Supply chain management * HVAC Systems * Industrial robotics * Dialog systems * Autonomous vehicles | * Supports Intel coach, Ray RLLib
* Tensorflow, MxNET
* Custom, commercial and
opensource environments
supported - Matlab simulink,
energy plus, robo school, pybullet,
Amazon Sumerian, AWS
Robomaker | * Depends on framework and
algo used, nothing tied to
Sagemaker | | | | | | | | | | | | | | Mandatory FLO | AT32 | Mandatory INT32 | CPU ONL | Υ | GPL | J Only | Increi |
mental Training Available | | | | Linear Learner | | Seq2Seq | XGBoost | | Seq2Seq | • | Image Classific | ation | | | | Factorization Ma | achines | Object2Vec | RCF | | Image Classifica | ation | Semantic Segm | nentation | | | | | | NTM | LDA | | Semantic Segm | entation | Object Detection | on | | | | | | | | | Object Detection | on | | | | | | | | | | | NTM | | | | | | | i | | | | | RL | | | | | |