Algorithm	Algo. Type	Input Format	INT/FLO AT	Processor Type	Instance	Multiprocessor in Single Machine	Multi Machine	Use Cases	Comments	НР
Linear Learner	SUPERVISED	* RecordIO Wrapped Protobuf / CSV * Float32 Data only	FLOAT32	CPU GPU	Any	CPU GPU	Only CPU No GPU	* Regression and classification * Classification: Binary or multiclass	* Need data to be normalized else algo may not converge * Multiple models are trained in parallel	balance_multiclass_weights learning_rate mini_batch_Size L1, L2
XGBoost	SUPERVISED	* CSV or LibSVM (not AWS algo, but adapted, hence NO RecordIO-protobuf)	-	CPU	M4	-	No	* Regression and classification * Classification: Binary or multiclass	* Output model as pickle * Uses extreme boosting of trees * Algo is memory bound, not much compute	* subsample_trees (less overfitting) * eta (eq. to learning rate) * alpha, gamma, lambda (conservative trees for higher values)
Seq2Seq	SUPERVISED	* RecordIO-Protobuf	INT	GPU	P3	GPU	No	* Machine translation * Text summarization * Speech to text * Any use case where input a sequence and output is a sequence	* Along with training data and validation data files, must provide vocabulary files in case of text seq2seq * Start with tokenized text files, then convert to RecordIO-Protobuf * Uses RNNs and CNNs internally	* batch_size * optimizer * learning_rate * num_layers_encoder * num_layers_decoder * can optimize on: accuracy, BLEU score (mach. translation), perplexity
DeepAR	SUPERVISED	* JSON Lines * GZIP * Parquet Each record to contain - Start: starting TS - Target: the TS values to learn/predict	-	CPU GPU	C4 P3	CPU GPU	CPU GPU	* Stock price prediction * Sales and promotion effectiveness * Any time oriented forecasting, single dimension	* Uses RNNs * Can train several related timeseries, more series the better results, learns relationships b/w timeseries * Start with CPU (C4.2xlarge, or higher), if necessary, move to GPU. Only large models need GPU	* context_length (number of time points back in time the model learns) * epochs, batch_size, learning_rate, num_cells
Blazing Text - Text Classification	SUPERVISED	Augmented manifest text format "label1 this is a sentence with , punctuations also tokenized . that is space delimited . One sentence per line . label at the start"	-	CPU GPU	size < 2GB: C5 size > 2GB: P2, P.	Single GPU	No	* web search and information retrieval	* predict labels for sentence	* epochs * learning_rate * word_ngrams * vector_dim

Algorithm	Algo. Type	Input Format	INT/FLO AT	Processor Type	Instance	Multiprocessor in Single Machine	Multi Machine	Use Cases	Comments	НР
Blazing Text - Word2Vec	UNSUPERVIS ED	Word2Vec one sentence per line	-	CPU GPU	Р3	CPU/GPU: CBOW & Skip Gram	GPU: Batch skip gram CPU: No	* Preparing input for NLP use cases * Vectorization of text for machine translation and sentiment analysis * Semantic similarity of words	* Represents words as vectors * Semantically similar words are represented by vectors close to each other * Semantic of or relating to meaning in language MULTIPLE MODES: * CBOW - Continuous Bag of Words - Order of words DO NOT matter * Skip Gram i.e. n-gram - order of words matter * Batch skip gram - order of words matter	* mode: mandatory * learning_rate * window_size * vector_dim * negative_Samples
Object2Vec		* Any object to be tokenized into integers * Training data: - pairs of tokens - sequence of tokens	INT	CPU GPU	M5, P2	Single machine	No	* Collaborative recommendation system * Multi-label document classification system * Sentence Embeddings * Learns relations or associations: - sen to sen - labels to seq (genre to description) - product to product (recommendation) - user to item (recommendation)	* CNNs and RNNs used * Encoders used in input - uses 2 encoders in parallel - learns associations b/w encoders, using a comparator Encoder types: * Hierchical CNNs (hCNNs) * bi-lstm * pooled_embedding	dropout, early_stopping_ epochs, learning_rate, batch_size, layers, act. func., optimizer, weight_decay
Object Detection	SUPERVISED	RecordIO (NOT Protobuf) or Images (JPEG or PNG) + With image manifest in JSON, one JSON per image that contains annotations	-	GPU	P2, P3	Yes	Yes	* Detect objects in an image * Object tracking	* Uses CNN with SSD * Transfer learning/incremental learning supported * Uses FLIP, RESCALE, JITTER internally to avoid overfitting * CPUs can be used for inference, not for training	Standard CNN HPs like: learning_rate, batch size, optimizer etc.
Image Classification	SUPERVISED	* Pipe: Apache MxNET RecordIO (NOT Protobuf) - for interoperability with other DNN frameworks * File Mode: Raw JPEG/PNG + *.LST files - associates image index, class label, path to image To use images directly in Pipe mode use JSON based Augmented Manifest Format	-	GPU	P2, P3	Yes	Yes	* classify images into multiple classes * dog/cat/rat/tiger etc.	* Full training: ResNet CNN is used. N/W initialized with random weights * Transfer Learning/Pre-trained: Image Net is used. Initialized with pre trained weights. Only Top FC layer is initialized with random weights. * CPU can be used for inference, if not suitable, move to GPU	* batch_size * learning_rate * optimizer, B1, B2, eps, Gamma

Algorithm	Algo. Type	Input Format	INT/FLO AT	Processor Type	Instance	Multiprocessor in Single Machine	Multi Machine	Use Cases	Comments	НР
Semantic Segmentation	SUPERVISED	* Raw JPEG/PNG in file mode + annotations * Add Augmented Manifest Format for Pipe Mode	-	GPU	P2, P3	Yes	No	* Self driving cars * Medical imaging and diagnostics * Robot sensing * Given a pixel - what object does it belong to ?	* Algo under hood: Gluon CV of MxNET = FC + Pyramid Scene Pairing + DeepLabV3 * Arch: ResNet50/ResNet101 = "Backbone" selection in HP * Trained on ImageNet data * Incremental/Transfer learning allowed * Inference can use CPU or GPU Each of the three algorithms has two distinct components: * The backbone (or encoder)—A network that produces reliable activation maps of features. * The decoder—A network that constructs the segmentation mask from the encoded activation maps. The segmentation output is represented as a grayscale image, called a segmentation mask. A segmentation mask is a grayscale image with the same shape as the	epochs, learning_rate, batch size, algo, backbone
Random Cut Forest	UNSUPERVIS ED	* RecordIO-Protobuf * CSV	-	СРИ	M4,C4,C5	-	No	* Anomaly detection * Detect unexpected spikes in TS data * Few people have tried using this for fraud detection	* Assigns anomaly score to each data point * Uses forest of trees * Looks at expected change in complexity as a result of adding a point to a tree * Random sampling * RCF is used in Kinesis Analytics in real time	in dataset)
Neural Topic Modelling	UNSUPERVIS ED	* RecordIO-Protobuf * CSV - Words must be tokenized to integers - aux channel for vocab	INT	GPU	P2, P3	-		* Organize docs into topics * Summarize docs based on topics	* Algo: Neural Variational Inference * Define how many topics to group docs into * Used only on text * CPU / GPU for inference	num_topics mini_batch_size learning_rate variation_loss (at expence of learing time)
LDA (Latent Dirichlet Allocation)	UNSUPERVIS ED	* RecordIO-Protobuf (Pipe Mode) * CSV - Words must be tokenized to integers - aux channel for vocab	-	СРИ	M4	No	No	* Cluster customers based on purchases * Harmonic analysis in music	* Algo: LDA - Open source availability, not DNN * Can process more than text, like harmonic music analysis * Single inst. CPU	num_topics alpha0 = small values - sparse topic mixtures, >1 uniform topic mixture

Algorithm	Algo. Type	Input Format	INT/FLO AT	Processor Type	Instance	Multiprocessor in Single Machine	Multi Machine	Use Cases	Comments	НР
kNN (k Nearest Neighbors)	SUPERVISED	* RecordIO-protobuf * CSV File or pipe mode both - first column has label	-	CPU GPU	-	-	-	* Classification and regression	* Sagemaker automates 3 steps: - Sample data (can't use for huge data) - Dim reduction (sign or nfjlt methods) - Build index for looking up neighbours	k sample_size
K-Means	UNSUPERVIS ED	* RecordIO-protobuf * CSV File or pipe mode both	-	CPU (recommen ded) GPU	M4, M5, C4, C5	-	-	* Cluster data - unsupervised * Find groups of data points based on similarity	* Webscale K-Means in Sagemaker * Similarity measured by euclidean distance * Works to optimize the centers of eack of the k-clusters * Algorithm: 1) Determine init. cluster centers = 2 ways: k-means++ (tries to make initial clusters far apart) OR random 2) Iterate over data and calculate cluster center 3) Reduce from K to k - using Lloyd's method or k-means++ K comes from "extra_cluster_centers" which improves accuracy, but later reduced to k. K = k * x	
PCA - Principal Component Analysis	UNSUPERVIS ED	* RecordIO-protobuf * CSV File or pipe mode both	-	CPU GPU	-	-	-	* Dimensionality Reduction * Removes Curse of Dimensionality	* Reduced Dimensions are called components * 1st component - largest possible variaility, next 2nd component, so on * Used Singular Value Decomposition (SVD) * Two Modes: - Regular: Sparse data. modelate #features, #rows - Randomized: Dense data. #large data, #large features, uses approximation algos	* algorithm_mode (regular, random * subtract_mean: unbiases data
Factorization Machines	SUPERVISED	* RecordIO-Protobuf	FLOAT32	CPU (recommen ded) GPU	-	-	-	* Regression, Classification, recommendation - all in one general purpose algo for sparse data * Click prediction * Item recommendation	* Limited to pairwise interaction - 2nd order e.g. user to item interactions * CSV not practical hence not supported,a s data is sparse *GPU not recommented as data is sparse, GPU works better on dense data	* Initialization methods for bias, factors and linear terms - methods: uniform, normal or const - can tune properties of each method

Algorithm	Algo. Type	Input Format	INT/FLO AT	Processor Type	Instance	Multiprocessor in Single Machine	Multi Machine	Use Cases	Comments	НР
IP Insights	UNSUPERVIS ED	* CSV only for training * Inference: JSON lines, CSV, JSON		CPU GPU (recommen ded)	-	Multi GPU	-	* Identify suspicious IP addresses in context of security * Logins from anomalous IPs * Identify accounts creating resources from anamolous IPs	* Only IPv4 supported * Uses NN to learn latent vector rep. of entities and IP addresses * entities are hashed and embedded - large hash size * Automatically generates anomalous data by randomly pairing entities and IPs - as data will be highly imbalanced	* num_entity_vectors (hash size, set to twice the unique entity identifiers) * vector_dim (size of embedding vectors, scales model size) * Others: epoch, batch_size, leraning_rate, etc.
Reinforcement Learning	REINFORCE MENT LEARNING	* Nothing specific to Sagemaker	-	GPU	GPU	Yes	Yes - Multi Instance GPU recommended	* Games * Supply chain management * HVAC Systems * Industrial robotics * Dialog systems * Autonomous vehicles	* Supports Intel coach, Ray RLLib * Tensorflow, MxNET * Custom, commercial and opensource environments supported - Matlab simulink, energy plus, robo school, pybullet, Amazon Sumerian, AWS Robomaker	* Depends on framework and algo used, nothing tied to Sagemaker
Mandatory FLO	AT32	Mandatory INT32	CPU ONL	Υ	GPL	J Only	Increi	 mental Training Available		
Linear Learner		Seq2Seq	XGBoost		Seq2Seq	•	Image Classific	ation		
Factorization Ma	achines	Object2Vec	RCF		Image Classifica	ation	Semantic Segm	nentation		
		NTM	LDA		Semantic Segm	entation	Object Detection	on		
					Object Detection	on				
					NTM					
i					RL					